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ABSTRACT 
 

This study is devoted to discrete sizing optimization of truss structures employing an 

efficient discrete evolutionary meta-heuristic algorithm which uses the Newton gradient-

based method as its updating scheme and it is named here as Newton Meta-heuristic 

Algorithm (NMA). In order to enable the NMA population-based meta-heuristic to 

effectively explore the discrete design space, a term containing the best solution found is 

added to the basic updating rule of the algorithm. The efficiency of the proposed NMA 

metaheuristic is illustrated by presenting five benchmark discrete truss optimization 

problems and comparing the results with literature. The numerical results demonstrate that 

the NMA is a robust and powerful meta-heuristic algorithm for dealing with the discrete 

sizing optimization problems of steel trusses.  
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1. INTRODUCTION 
 

Saving in energy and material consumption is an important factor in the field of green 

engineering and usually from an economical viewpoint, the structure with minimum weight 

is defined as the best structure. In order to find such designs, structural optimization 

techniques can be effectively used. In the last decade, many optimization techniques have 

been developed and successfully applied to a wide range of structural optimization problems 

including sizing, layout and topology optimization problems [1-3]. Meta-heuristics are the 

most general kinds of stochastic optimization algorithms and they are now recognized as one 

of the most practical approaches for solving a wide range of optimization problems. The 

main idea behind designing these meta-heuristic algorithms is to solve complex optimization 
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problems where other optimization methods have failed to be effective. The practical 

advantage of meta-heuristics lies in both their effectiveness and general applicability. In 

recent years, meta-heuristic algorithms are emerged as the global search approaches, which 

are responsible to tackle the complex optimization problems. 

Most of the meta-heuristic algorithms are developed based on natural phenomena. Every 

meta-heuristic method consists of a group of search agents that explore the design space 

based on randomization and some specified rules inspired the laws of natural phenomena. 

For example, Genetic Algorithms (GA) [4], Biogeography-Based Optimization (BBO) [5], 

and Differential Evolution (DE) [6] are developed based on the Darwin’s principle of 

survival of the fittest. Gravitational Search Algorithm (GSA) [7], Colliding Bodies 

Optimization (CBO) [8] and Center of Mass Optimization (CMO) [9] are Physics-based 

meta-heuristic algorithms. Particle Swarm Optimization [10] (PSO), Ant Colony 

Optimization [11] (ACO), Bat algorithm [12] (BA), Dolphin Echolocation Algorithm (DEA) 

[13] and Finite Defirence Algorithm [14] (FDA) are recognized as popular Swarm 

intelligence meta-heuristics.  

One of the newly developed meta-heuristic algorithms is the Newton Meta-heuristic 

Algorithm  (NMA), which is proposed by Author [15]. The NMA requires that the generated 

solutions fluctuate outwards or towards the best solution found so far using Newton’s 

method for find an optimum of a function. It was demonstrated in that the NMA is able to 

effectively solve the continuous optimization problems.   

Optimization of truss structures is very popular in the area of structural optimization and 

over the last decades, various algorithms have been proposed for solving these problems. 

There is a significant number of meta-heuristics employed for truss optimization with 

discrete variables in the literature such as: Discrete Heuristic Particle Swarm Ant Colony 

Optimization (DHPSACO) [16], Improved Dolphin Echolocation Algorithm (IDEA) [17], 

Improved Mine Blast Algorithm (IMBA) [18], Adaptive Elitist Differential Evolution 

(AEDE) [19], and Improved Fireworks Algorithm (IFWA) [20].  

In the present study, a newton meta-heuristic algorithm (NMA) is proposed to handle the 

truss structures optimization with discrete design variables, that uses the approximate 

gradient of pseudo objective function during its search is proposed. In the other words, the 

main updating rule of the proposed meta-heuristic is derived from summation of two terms. 

The first term is derived from the Newton gradient-based method using the approximate 

derivatives of objective function and constraints. The second term includes the difference 

between the current solution and the best solution obtained so far. Since the proposed meta-

heuristic applies the Newton’s method in an evolutionary framework, it is named as Newton 

Meta-heuristic Algorithm (NMA). In order to demonstrate the merit of the proposed NMA 

for solving discrete structural optimization problems, five benchmark discrete truss 

optimization problems are presented and the results of NMA are compared with those of 

other global search algorithms reported in literature. 

 

 

2. TRUSS OPTIMIZATION PROBLEM 
 

For the optimization problem of trusses, objective function is the structural weight and some 

limitations are usually considered on nodal displacements and element stress as the design 
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constraints. Formulation of truss structures optimization problem is as follows: 
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where W is structural weight; γi, li and Xi are the density of material, element length and 

cross-sectional area of ith element, respectively; displacement and stress constraints are 

represented by d

jg and 
s

kg , respectively; dj and σk are jth node displacement and kth element 

stress, respectively; 
jd  and k  are their allowable values; n and m are numbers of elements 

and nodes, respectively. 

The following exterior penalty function (EPF) is employed to handle the constraints of 

the above constrained optimization problem. 
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where Φ is pseudo unconstrained objective function; and pr is a penalty parameter. In this 

study, pr is linearly increased from 1.0 at the first iteration to 106 at the last one during the 

optimization process. 

 

 

3. NMA METAHEURISTIC ALGORITHM 
 

In order to find an optimum of a function f(x) the Newton’s method can be effectively used. 

As the derivative is zero at an optimum point, local optima may be found by applying 

Newton’s method to the derivative. In this case, the iteration can be formulated as follows:   
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where t

ix and 1t

ix are the values of xi at iterations t and t+1, respectively; )(xf t

i
 and )(xf t

i
 are the 

first and second order derivatives of function f at point t

ix , respectively. 

Determining the explicit form of derivatives for many real-world problems is impossible 

or at least is very difficult therefore, numerical approximations of derivatives can be 
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effectively applied. In this study, to calculate the numerical approximations of the 

derivatives, three points t

ix 1
, t

ix , and t

ix 1
for which )()()( 11
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it is assumed that: 
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where κ is a positive parameter. 

The second-order Taylor expansion of the function f around xi is as follows: 
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By assuming t
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follows: 
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Simultaneously solving Eqs (9) and (10) for )( t

ixf  and )( t

ixf  yields: 
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By putting Eqs (11) and (12) in Eq. (5), the iteration will be as follows: 
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In this study, a new population-based meta-heuristic optimization algorithm is proposed 

to deal with discrete structural optimization problems based on a modified version of Eq. 

(13) as the updating rule of position of particles in design space. The proposed new and 

simple optimization algorithm is named as Newton Meta-heuristic Algorithm (NMA). The 

basic concepts of the proposed NMA metaheuristic are explained in details below. 

For an optimization problem with m design variables, an initial population of n particles 

is randomly generated in the design space.  
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where 0
P is initial population; 

0

iX is the ith particle of initial population; and 0

ijx is the jth 

design variable of ith particle of initial population.   

At iteration t, objective function values of the particles are evaluated and the population 

is sorted in an ascending order based on the objective values: 
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where t

SP  is the sorted population at iteration t; and f(.) is the objective function of the 

optimization problem. 

If the following equation is used to update the position of particles in the design space, 

the algorithm will prematurely converge to a local optimum:  
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where round(.) function rounds real numbers to the nearest integer; and ||.|| denotes a vector 

norm. In order to improve the performance of the NMA meta-heuristic, the following 

equation is proposed for updating the particles’ position: 
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where tR1
 and tR2

 are vectors of random numbers drawn from [0,1] at iteration t; the 

maximum number of iterations is represented by tmax; and XB is the global best solution 

obtained so far.   

The local and global search abilities of the proposed NMA meta-heuristic come from 

second and third terms in Eq. (21), respectively and the results of this study reveal that 

coefficients of (1-t/tmax) and (t/tmax) provide a fine balance between exploitation and 

exploration of NMA. Flowchart of the proposed NMA is depicted in Fig. 1. 
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Figure 1. Flowchart of NMA 

 

 

4. NUMERICAL RESULTS 
 

In order to illustrate the merit of the proposed NMA, a number of popular discrete 

benchmarks truss optimization problems are presented and the obtained results are compared 

with those of literature. For the presented examples, 50 independent optimization runs are 

performed and the best weight (Best), average weight (Average) and the standard deviation 

(SD) of optimal weights are reported. 
Example 1: 10-bar planar truss 

The 10-bar truss shown in Fig. 2 is one of the most extensively studied problems. The 

vertical load in nodes 2 and 4 is equal to 105 lb. The Young's modulus and density of 

material are 104 ksi and 0.1 lb/in3, respectively.  

 

 
Figure 2. 10-bar truss 

initial population on generation & objective values evaluation 

Sorting the particles in an ascending order of their objectives 

Updating the best solution obtained so far (XB) 

Updating the position of particles using Eqs (19) to (21) 

Checking the stopping 

criteria? 

Final solution of the algorithm is XB   

Yes 

No 
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The allowable stress for all members is specified as 25 ksi in both tension and compression. 

The maximum displacements of all free nodes in the x and y directions are limited to ±2 in. In 

this example, the discrete design variables are selected from the following list: [1.62, 1.80, 

1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 

4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90, 14.20, 15.50, 16.00, 

16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50] (in2).   

Cross-sectional areas of elements 1 to 10 (i.e. A1 to A10) are considered as the design 

variables. In the optimization process, 50 particles are involved and the maximum number of 

iterations is chosen to be 100. The optimization result of NMA is compared with those of 

HPSO [21], HHS [22], and AEDE [19] in Table 1. In addition, the best and mean 

convergence curves of NMA is shown in Fig. 3. 

 
 

 
Figure 3. Mean and Best convergence curves for 10-bar truss 

 

Table 1: Results of optimization for the 10-bar truss 

Design variables HPSO [20] HHS [21] AEDE [18] This Study 
NMA 

A1 30.0 33.5 33.5 33.5 

33.5 A2 1.62 1.62 1.62 1.62 

1.62 A3 22.9 22.9 22.9 22.9 

22.9 A4 13.5 14.2 14.2 14.2 

14.2 A5 1.62 1.62 1.62 1.62 

1.62 A6 1.62 1.62 1.62 1.62 

1.62 A7 7.97 7.97 7.97 7.97 

7.97 A8 26.5 22.9 22.9 22.9 

22.9 A9 22.0 22.0 22.0 22.0 

22.0 A10 1.80 1.62 1.62 1.62 

1.62 Best (lb) 5531.98 5490.74 5490.74 5490.74 
Average (lb) N/A 5493.49 5502.62 5490.91 

SD (lb) N/A 10.46 20.78 0.00 

Analyses 50000 5000 2550 2880 
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NMA, AEDE and HHS find the best optimal design among other algorithms. However, 

the statistical results of NMA, in terms of Average and SD are very better than those of 

AEDE and HHS.  

Example 2: 25-bar spatial truss 

The 25-bar spatial truss structure, shown in Fig. 4, is one of the popular design examples 

in literature. The material density is 0.1 lb/in3 and the modulus of elasticity is 104 ksi. The 

structure includes 25 members, which are divided into eight groups, as follows: (1) A1, (2) 

A2–A5, (3) A6–A9, (4) A10– A11, (5) A12–A13, (6) A14–A17, (7) A18–A21 and (8) A22–A25. The 

allowable stress of the members is ±40 ksi and all nodes are subjected to displacement 

limitation of ±0.35 in. 

 

 
Figure 4. 25-bar spatial truss 

 

The design variables will be selected from the set: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4] 

(in2). The loads applied to the truss are given in Table 2. 
 

Table 2: Loading conditions for the 25-bar truss (kips) 

Node Fx Fy Fz 

1 1.0 –10.0 –10.0 

2 0.0 –10.0 –10.0 

3 0.5 0.0 0.0 

6 0.6 0.0 0.0 

 

The optimization result of this study, by considering 50 particles and 100 iterations, is 

compared with those of HPSO [21], ECBO [23] and AEDE [19] in Table 3. In addition, Fig. 

5 compares the best and mean convergence curves of NMA. 

The numerical results indicate that also all algorithms converge to the best optimal design 

however, the Average, SD and convergence rate of NMA are better in comparison with 

other algorithms. The computational effort of HPSO is significantly more than that of other 

algorithms.  
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Table 3: Results of optimization for the 25-bar truss 

Design variables HPSO[20] ECBO[22] AEDE[18] 
This Study 

NMA 

A1 0.1 0.1 0.1 0.1 

A2–A5 0.3 0.3 0.3 0.3 

A6–A9 3.4 3.4 3.4 3.4 

A10–A11 0.1 0.1 0.1 0.1 

A12–A13 2.1 2.1 2.1 2.1 

A14–A17 1.0 1.0 1.0 1.0 

A18–A21 0.5 0.5 0.5 0.5 

A22–A25 3.4 3.4 3.4 3.4 

Best (lb) 484.85 484.85 484.85 484.85 

Average (lb) - 485.89 485.01 484.94 

SD (lb) - - 0.273 0.00 

Analyses 25000 7050 1678 250 

       

  
Figure 5. Mean and Best convergence curves for 25-bar truss 

 

Example 3: 52-bar planar truss 

Another popular benchmark truss optimization problem is the 52-bar truss shown in Fig. 

6 in which Px=100 kN and Py=200 kN. The Young's modulus, the material density and the 

allowable stress are 207 GPa, 7860 kg/m3 and ±180 MPa, respectively. Element groups are 

as: (1) A1–A4, (2) A5–A10, (3) A11–A13, (4) A14–A17, (5) A18–A23, (6) A24–A26, (7) A27–A30, (8) 

A31–A36, (9) A37–A39, (10) A40–A43, (11) A44–A49, and (12) A50–A52 which are selected from 

Table 4 during the optimization process. In this example, population size and maximum 

number of iterations are 100 and 20, respectively. 
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Figure 6. 52-bar truss 

 
Table 4: Available cross-sectional areas of the AISC 

No

. 

mm2 in2  No

. 

mm2 in2  No

. 

mm2 in2  No

. 

mm2 in2 
1 71.613 0.11

1 

 17 1008.38

5 

1.56

3 

 33 2477.41

4 

3.84  49 7419.340 11.

5 2 90.968 0.14

1 
 18 1045.15

9 
1.62  34 2496.76

9 
3.87  50 8709.660 13.

5 3 126.45

1 

0.19

6 
 19 1161.28

8 
1.80  35 2503.22

1 
3.88  51 8967.724 13.

9 4 161.29

0 

0.25

0 
 20 1283.86

8 
1.99  36 2696.76

9 
4.18  52 9161.272 14.

2 5 198.06

4 

0.30

7 
 21 1374.19

1 
2.13  37 2722.57

5 
4.22  53 9999.980 15.

5 6 252.25

8 

0.39

1 
 22 1535.48

1 
2.38  38 2896.76

8 
4.49  54 10322.56

0 

16.

0 7 285.16

1 

0.44

2 
 23 1690.31

9 
2.62  39 2961.28

4 
4.59  55 10903.20

4 

16.

9 8 363.22

5 

0.56

3 
 24 1696.77

1 
2.63  40 3096.76

8 
4.80  56 12129.00

8 

18.

8 9 388.38

6 

0.60

2 
 25 1858.06

1 
2.88  41 3206.44

5 
4.97  57 12838.68

4 

19.

9 10 494.19

3 

0.76

6 
 26 1890.31

9 
2.93  42 3303.21

9 
5.12  58 14193.52

0 

22.

0 11 506.45

1 

0.78

5 
 27 1993.54

4 
3.09  43 3703.21

8 
5.74  59 14774.16

4 

22.

9 12 641.28

9 

0.99

4 
 28 2019.35

1 
3.13  44 4658.05

5 
7.22  60 15806.42

0 

24.

5 13 645.16

0 
1.0  29 2180.64

1 
3.38  45 5141.92

5 
7.97  61 17096.74

0 

26.

5 14 792.25

6 

1.22

8 
 30 2238.70

5 
3.47  46 5503.21

5 
8.53  62 18064.48

0 

28.

0 15 816.77

3 

1.26

6 
 31 2290.31

8 
3.55  47 5999.98

8 
9.30  63 19354.80

0 

30.

0 16 939.99

8 

1.45

7 
 32 2341.93

1 
3.63  48 6999.98

6 

10.8

5 
 64 21612.86

0 

33.

5 
 

Table 5 compares the optimization result of the present study is those of obtained by 

HPSO [21], IMBA [18] and AEDE [19]. Comparison of convergence curves of best and 

mean is shown in Fig. 7. 
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Table 5. Results of optimization for the 52-bar truss 

Design variables HPSO[20] IMBA[17] AEDE[18] 
This Study 

NMA 

A1–A4 4658.055 4658.055 4658.055 4658.055 

A5–A10 1161.288 1161.288 1161.288 1161.288 

A11–A13 363.225 494.193 494.193 494.193 

A14–A17 3303.219 3303.219 3303.219 3303.219 

A18–A23 939.998 939.998 939.998 939.998 

A24–A26 494.193 494.193 494.193 494.193 

A27–A30 2238.705 2238.705 2238.705 2238.705 

A31–A36 1008.385 1008.385 1008.385 1008.385 

A37–A39 388.386 494.193 494.193 494.193 

A40–A43 1283.868 1283.868 1283.868 1283.868 

A44–A49 1161.288 1161.288 1161.288 1161.288 

A50–A52 792.256 494.193 494.193 494.193 

Best (kg) 1905.49 1902.605 1902.605 1902.605 

Average (kg) - 1903.076 1906.735 1903.07 

SD (kg) - 1.13 6.679 1.326 

Analyses 100000 4750 3402 10000 

 

 
Figure 7. Mean and Best convergence curves for 52-bar truss 

 

It can be seen that IMBA, AEDE and NMA converge to the same best. In this example, 

IMBA is the best algorithm in terms of Average and SD and the second best algorithm is 

NMA.  

Example 4: 72-bar spatial truss 

The 72-bar spatial truss is shown in Fig. 8. In this example, there are 16 groups of 

elements as follows: (1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–A18, (5) A19–A22, (6) A23–A30 

(7) A31–A34, (8) A35– A36, (9) A37–A40, (10) A41–A48, (11) A49–A52, (12) A53–A54, (13) A55– A58, 

(14) A59–A66 (15) A67–A70, (16) A71–A72. The modulus of elasticity and material density are 

104 ksi and 0.1 lb/in3, respectively. During the optimization process, the design variables are 
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selected from the database of Table 4. The allowable stress in elements is ±25 ksi and the 

allowable horizontal displacement is ±0.25 in. In addition, there are two loading conditions 

given in Table 6.  

 

 
Figure 8. 72-bar truss 

 

Table 6: Loading conditions for the 72-bar truss 

Node 
Loading condition 1  

(kips) 
 

Loading condition 2  

(kips) Fx Fy Fz Fx Fy Fz 

17 5.0 5.0 –5.0  0.0 0.0 –5.0 

18 0.0 0.0 0.0  0.0 0.0 –5.0 

19 0.0 0.0 0.0  0.0 0.0 –5.0 

20 0.0 0.0 0.0  0.0 0.0 –5.0 

 

In the optimization process the population size and maximum number of iterations are 

considered to be 50 and 200, respectively. The results obtained in the present study are 

compared with those of HPSO [21], IMBA [18] and AEDE [19] in Table 7. Furthermore, 

convergence curves of best and mean are compared in Fig. 9. 

These results reveal that, NMA is competitive in comparison with other algorithms of 

literature. The statistical results of IMBA are slightly better than those of NMA however at 

very high computational effort. 
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Figure 9. Mean and Best convergence curves for 72-bar truss 

 

Table 7: Results of optimization for the 72-bar truss 

Design variables HPSO[20] IMBA[17] AEDE[18] 
This Study 

NMA 

A1–A4 4.97 1.990 1.990 1.990 

A5–A12 1.228 0.442 0.563 0.563 

A13–A16 0.111 0.111 0.111 0.111 

A17–A18 0.111 0.111 0.111 0.111 

A19–A22 2.88 1.228 1.228 1.228 

A23–A30 1.457 0.563 0.442 0.442 

A31–A34 0.141 0.111 0.111 0.111 

A35–A36 0.111 0.111 0.111 0.111 

A37–A40 1.563 0.563 0.563 0.563 

A41–A48 1.228 0.563 0.563 0.563 

A49–A52 0.111 0.111 0.111 0.111 

A53–A54 0.196 0.111 0.111 0.111 

A55–A58 0.391 0.196 0.196 0.196 
A59–A66 1.457 0.563 0.563 0.563 

A67–A70 0.766 0.391 0.391 0.391 
A71–A72 1.563 0.563 0.563 0.563 

Best (lb) 933.09 389.33 389.33 389.33 

Average (lb) N/A 389.82 390.91 389.75 

SD (lb) N/A 0.84 1.161 0.928 
Analyses 50000 50000 4160 5000 

 

Example 5: 200-bar planar truss 

Fig. 10 depicts the 200-bar truss and the grouping details of its members. The material 

density, elastic modulus and the allowable stress for elements are 0.283 lb/in3, 30 Msi, and 

±10 ksi, respectively.  

The structure is subjected to the following loading conditions:  

(I) 1 kip in the positive x direction at nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 62 and 71;  

(II) 10 kips in the negative y direction at nodes 1 to 5; 6 to 14 with step 2; 15 to 19; 20 to 
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28 with step 2; 29 to 33; 34 to 42 with step 2; 43 to 47; 48 to 56 with step 2; 57 to 61; 62 to 

70 with step 2; and 71 to 75;  

(III) Loading conditions (I) and (II) are applied simultaneously. 

 

 
Figure 10. 200-bar truss 

 

Design variables’ discrete database for the optimization of 200-bar truss is S={0.100, 

0.347, …, 28.080, 33.700 } in2 [19-25]. In this example, the number of particles and the 

maximum number of iterations for NMA are 200 and 50, respectively. The results of NMA 

over fifty independent optimization runs are compared with those of elitist self-adaptive 

step-size search (ESASS) [25], AEDE [19] and IFWA [20] in Table 8. It can be observed 

that NMAoutperforms ESASS, AEDE, and IFWA metaheuristics in terms of Best, SD, and 

Average optimal weights spending almost the same computational cost. Furthermore, Fig. 

11 illustrates mean and best convergence curves for 50 independent optimization runs of 
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200-bar truss indicating very close and good convergence rate of NMA in the all runs.  
These results reveal that, NMA is competitive in comparison with other algorithms of 

literature. The statistical results of NMA are slightly better than those of others however at very 

high computational effort.  

 

Table 8. Results of optimization for the 200-bar truss 

Member group ESASS AEDE IFWA 
This Study 

NMA 

1 0.100 0.100 0.347 0.100 

2 0.954 0.954 0.954 0.954 

3 0.100 0.347 0.100 0.347 

4 0.100 0.100 0.100 0.100 

5 2.142 2.142 2.142 2.142 

6 0.347 0.347 0.347 0.347 

7 0.100 0.100 0.100 0.100 

8 3.131 3.131 3.565 3.131 

9 0.100 0.347 0.100 0.100 

10 4.805 4.805 4.805 4.805 

11 0.347 0.539 0.440 0.539 

12 0.100 0.347 0.100 0.100 

13 5.952 5.952 5.952 5.952 

14 0.100 0.100 0.100 0.100 

15 6.572 6.572 6.572 6.572 

16 0.440 0.954 0.539 0.539 

17 0.539 0.440 0.954 0.440 

18 7.192 8.525 8.525 8.525 

19 0.440 0.100 0.100 0.100 

20 8.525 9.300 9.300 9.300 

21 0.954 0.954 1.174 0.954 

22 1.174 1.081 0.440 0.347 

23 10.85 13.33 13.33 13.33 

24 0.440 0.539 1.333 0.100 

25 10.85 14.29 13.33 13.33 

26 1.764 2.142 2.142 1.081 

27 8.525 3.813 3.565 5.952 

28 13.33 8.525 8.525 10.85 

29 13.33 17.17 17.17 14.29 

Best (lb) 28075.49 27858.50 27449.25 27125.07 

Average (lb) - 28425.87 27859.42 27575.11 

SD (lb) - 481.59 380.55 221.72 

Analyses - 11644 10000 10000 
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Figure 11. Mean and Best convergence curves for 200-bar truss 

 

 

5. CONCLUDING REMARKS 
 

The present study focuses on a firstly developed FDA algorithm and proposes a modified 

FDA (NMA). As the primary version of this meta-heuristic seriously suffers from the slow 

convergence rate when dealing with the discrete truss optimization problems. The proposed 

NMA integrates two computational strategies during its search process The first term is 

derived from the Newton gradient-based method using the approximate derivatives of 

objective function and constraints. The second term includes the difference between the 

current solution and the best solution obtained so far.  

In order to illustrate the efficiency of the NMA, a sort of well-known discrete benchmark 

truss optimization problems, including 10-, 25-, 52-,72- and 200-bar trusses, are presented 

and the results of NMA are compared with those of HPSO, HHS, AEDE, ECBO, and 

IMBA. The numerical results consistently showed superiority of the proposed algorithm 

over a number of metaheuristic algorithms in literature. Therefore, this simple and efficient 

algorithm can be effectively used to deal with discrete optimization of trusses and 

performance-based design optimization of steel moment frames. 
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